1997 Abstract Form for Scientific Presentations INTERNATIONAL SOCIETY FOR AGNETIC RESONANCE IN MEDICINE FIFTH SCIENTIFIC MEETING

> VANCOUVER TRADE & CONVENTION CENTRE

VANCOUVER, B.C., CANADA April 12 - 18, 1997

Prefer Oral Presentation but willing to present as a poster

Video required (available ONLY for Oral Presentations)

Prefer Poster but willing to make Oral Presentation Poster Only

PIC CATEGORIES TER CATEGORY NUMBER

Brain—Animal Models Brain—White Matter Brain-Vascular

Brain—Functional
Brain—Other
Head, Neck, Spine and Other CNS
Heart—Coronary Heart Disease

Heart—Dynamics and Flow Heart—Other Vascular—Non-Neuro

Breast/Chest Abdomen Genitourinary-Pelvis Musculoskeletal Interventional Applications

Outcomes-Econ **:CTROSCOPY**

Human Brain—White Matter & Degenerative Human Brain—Stroke & Scizure Human Brain—Tumors and Other Animal Brain Cardiovascular Abdomen and Pelvis Musculoskeletal Tumors—Animal Models Cells, Body Fluids, and Other

THODOLOGY

Spectroscopic Quantitation

Angiography Flow Quantification Diffusion Functional Neuro—Acquisition and Analysis Functional Neuro—Models and Mechanisms Microscopy, Non-proton MRI, and ESR Gradients and Hardware RF Coils RF Puleoe Rapid Imaging Motion and Artifacts Other MRI sequences/Reconstruction Quantitative MRI

Image Processing and Display Contrast Mechanisms/MTC Paramagnetic Contrast Agents Other Contrast Agents Safety/Bioeffects/Patient Monitoring Interventional MRI Spectroscopic Localization and imaging Spectroscopy—Other

TRACT DEADLINE:

ived no later than November 19, 1996, opyrights to accepted abstracts become the rty of the ISMRM. No proprietary nation may be withheld by authors. L TO:

Fifth Scientific Meeting 2118 Milvia Street, Suite 201 Berkeley, CA 94704, USA

ors mailing abstracts from outside the should allow six weeks for mailing or abstracts by express.

e type the name and complete ig address of the first author. . Andrzej Jesmanowicz, PhD physics Research Inst. ss Medical College of WI 1 Watertown Plank Rd. waukee, WI 53226 try U.S.A. hone (414) 456-4030 (414) 266-8515 andre@post.its.mcw.edu эеr of ISMRM? 🖺 Yes 🔲 No

Single-Shot Half NEX 256 × 256 Resolution EPI at 3 Tesla

A. Jesmanowicz, P.A. Bandettini, and J. S. Hyde Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, WI

Purpose

The purpose of this study is to demonstrate the feasibility of half NEX single-shot high resolution (256 × 256) echo-planar imaging (EPI) with a FOV as low as 16 cm. Previous techniques used multi-shot interleaved strategies (1,2). With these techniques, a trade-off in temporal resolution and in phase stability is necessary. T2* decay determines the point-response function. A further purpose is to compare half-NEX and whole-NEX point-response functions at the same resolution.

Methods

All studies were performed on a 3 T BIOSPEC 30/60 Bruker scanner with off-line reconstruction on an HP748 VME workstation. A Pentex 16-bit A/D converter was incorporated. Conversion was performed at a constant 1 M samples/sec and additional filtering was done digitally. A balanced torque three-axis local gradient coil with endcap bandpass birdcage rf coil was used for gradient-recalled EPI. TE=19.5 ms, TR=1 sec, thickness=5 mm, FOV=16 cm, BW=±88 KHZ, total readout time=235 ms. Half k-space reconstruction with 8 overscan lines at the beginning of the readout. A conventional bilateral finger movement motor cortex FMRI experiment was used to evaluate the sequence.

Results

Figure 1 shows three half-NEX anatomic images reconstructed in different ways from the same data set. Figure 2B was obtained with conventional 256×256 half-NEX reconstruction; Fig. 2A is a 256 × 128 image obtained by truncating the outer 64 points of k-space; and Fig. 2C is a 256 × 256 image obtained by artificially correcting each line in k-space for T2* decay. It is apparent that the resolution of Fig. 2B is higher than 2A. The resolution is higher still in Fig. 2C, but the SNR is decreased. Figure 2A shows an expanded 256 × 256 anatomic image and Fig. 2B a functional correlation image. High resolution allows identification of vein and capillary effects.

Discussion and Conclusion

Improved resolution in FMRI without degradation of SNR is possible when physiological fluctuations dominate. At sufficiently high resolution, a cross-over occurs and thermal noise dominates. This cross-over appears to occur at about 128 × 128. For whole-NEX readout, the point response function is given by FWHM=4 TAD/ $(\pi T2^*)$ where TAD is the readout duration on one side of the full k-space readout. For half-NEX at the same resolution, FWHM is two times less. Fig. 3 shows a simulation of the pointresponse function for half and whole NEX. This factor of 2 is central to the work described here. It is estimated that the point-response function for half NEX at 3 T in human brain in the present study is about two pixels. Nevertheless, a noticeable benefit is observed experimentally. Half-NEX EPI offers fundamental benefit in high resolution FMRI studies. An additional benefit is improved temporal resolution.

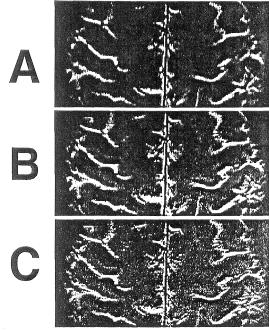


Figure 1. Anatomic image.

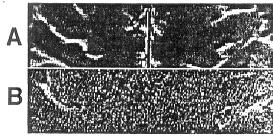


Figure 2. a, anatomic image; b, FMRI correlation image.

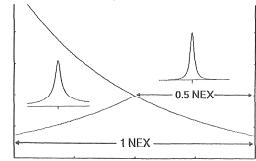


Figure 3. Simulation of the point-response function for half NEX.

- 1. McKinnon, G.C., Magn. Reson. Med., 30, 609-616,
- 2. Clare, S., Hykin, J., Bowtell, R., Coxin, R., Morris, P.G., in "Proc., ISMRM, New York," p. 1821, 1996